
Yury Makedonov ivm@ivm-s.com p. 1 of 7

Toronto Mercury Users Group April 12, 2002

Evolution of a WinRunner framework from a pilot project to a multi-project test team
(on the example of a web application)

I discuss here the evolution of organization of WinRunner scripts (WinRunner framework) through the
different steps on the example of a web application. It would be presented as a story of a fictious successful
company that starts with their first WinRunner tester and grows up to test automation team supporting
several projects.
For every step I discuss the possible problems and their solutions.

Beginning:
First WinRunner scripts developer + first version of the application.
All WinRunner scripts are stored on C: drive.

XYZ Inc.
Test Automation Team
Cool WinRunner script by Yury M.
Description: Tests the application

GUI_load("C:\\Program Files\\Mercury\\WinRunner\\tmp\\CoolGuiMap.gui");
web_browser_invoke(IE,"http://confut.bell.ont.ca");

Blah();
Blah();

Step 2 – libraries of functions
Introduction of libraries of functions.

XYZ Inc.
Test Automation Team
One more cool WinRunner script by Yury M.
Description: Thoroughly tests the application

load("C:\\Program Files\\Mercury\\WinRunner\\tmp\\Lib_UT_Functions");

GUI_load("C:\\Program Files\\Mercury\\WinRunner\\tmp\\CoolGuiMap.gui");
web_browser_invoke(IE,"http://confut.bell.ont.ca");

UT_Select_Language("English");
UT_Login("a327012", "12345");
UT_Select_Portfolio("KEY");

Yury Makedonov ivm@ivm-s.com p. 2 of 7

Toronto Mercury Users Group April 12, 2002

Step 3 – different environments: QA, Mirror, Production
We have to run the same script against different environments: QA, Mirror, Production, etc.
Hardcoded UT_Site_Open() function.

Main Test:

Load("C:\\Program Files\\Mercury\\WinRunner\\tmp\\Lib_UT_Functions");

GUI_load("C:\\Program Files\\Mercury\\WinRunner\\tmp\\CoolGuiMap.gui");

UT_Site_Open();

UT_Select_Language("English");
UT_Login("a327012", "12345");
UT_Select_Portfolio("KEY");

Compiled
Module

#==
function UT_Site_Open()
Version # Created by Date Version
1.0 ymakedonov Mar 11, 2002 Initial version
#--
#Opens a new UT site in a new browser window:
{
 auto autoUTSiteURL = "http://confut.bell.ont.ca";

 report_msg ("Will try to open site '" & autoUTSiteURL & "'");
 web_browser_invoke (IE, autoUTSiteURL);
 return 0;
}

Step 4 – New version of the application delivered
New version of the application delivered – we have different versions in QA environment and production –
and have to support them simultaneously.
Cloning of scripts

To start development of test scripts for new version of the application we copy the folder with all scripts and
other files and use the Application version as a name of this folder. Also we rename the original folder.
To use this approach we should not specify a full path for a GUI map or a script. Only names are allowed!

load("Lib_UT_Functions");

GUI_load("CoolGuiMap.gui");

UT_Open_Site();

UT_Select_Language("English");
UT_Login("a327012", "12345");
UT_Select_Portfolio("KEY");

call "Invoice_Create"();

Yury Makedonov ivm@ivm-s.com p. 3 of 7

Toronto Mercury Users Group April 12, 2002

Step 5 – new member of a test automation team
Second (junior) tester working with WinRunner appeared. Only scripts execution. Master – Apprentice
relationship.
Everything is stored on C: drives.
Apprentice only copies scripts developed by a senior tester and executes them.

Step 6 – more members of a team
Several testers working with WinRunner. Scripts moved onto shared Z: drive.

load("Lib_UT_Functions");

GUI_load("CoolGuiMap.gui");

UT_Open_Site();

UT_Select_Language("English");
UT_Login("a327012", "12345");
UT_Select_Portfolio("KEY");

call "Invoice_Create"();

Step 7 – concurrent access for modification/execution
Simultaneous execution/modification of the same script/library on different workstations.
All modifications are performed on a local copy of a script.
After debugging script will be copied onto a shared drive.
Each script has an “owner”. Owner stores “master” copy of the script on his local workstation.
Re-mapping server/workstation using “subst” command as an option.

subst Z: Y:\WRscr ipts subst Z: C:\WRscr ipts

Yury Makedonov ivm@ivm-s.com p. 4 of 7

Toronto Mercury Users Group April 12, 2002

Step 8 – test automation for several applications
Team got several applications to perform test automation.
Application (version) specific libraries and general libraries (used by all projects) are stored in different
folders.

How to load an object from “General Libraries” folder (GUI map, compiled module, data file) from a main test
script?
Just remember the rule “No full path”!

Solution A:
Use PathOneLevelUp() function and “testname” variable to find an object stored in another folder. We can
use this function recursively. Path relative to a launched script.

Example showing how to load a general library from an “Application” script:

load(PathOneLevelUp(PathOneLevelUp(PathOneLevelUp(getvar("testname"))))
 & "General libraries" & "\\" & "Lib_Generic_Functions")

Code of PathOneLevelUp() function:

function PathOneLevelUp(varPath)
Version # Created by Date Version
1.0 ymakedonov Aug 23, 2001 Initial version
This functions returns a path of a parent folder
{
 auto numElements, path_array[], varPathOneLevelUp = "", i;

 numElements = split (varPath, path_array, "\\");
 delete path_array[numElements];
 for (i=1; i<numElements; i++)
 varPathOneLevelUp = varPathOneLevelUp & path_array[i] & "\\";

 return varPathOneLevelUp;
}

Yury Makedonov ivm@ivm-s.com p. 5 of 7

Toronto Mercury Users Group April 12, 2002

Solution B:
Use a “Startup Test” to load generic libraries.

Main goal of Load_Generic_Functions() is to load a common library:

function Load_Generic_Functions()
Version # Created by Date Version
1.0 ymakedonov Aug 23, 2001 Initial version
Loading a generic library
{
 load("Lib_Generic_Functions",0,0);

}

This function can also be used to perform other initialization tasks.

Step 9:
To decrease risk and streamline the logic we can store general libraries and scripts for a particular
application on a different drive letters.
Only application scripts would be modified frequently. People won’t be updating general libraries very often.
We can move script onto different drive letters (C:, X:, Y:, Z:, etc.) without any code modification due to the
“No full path” rule.

subst W: C:\WRscr ipts subst L: Y:\Wrl ibrar ies

Yury Makedonov ivm@ivm-s.com p. 6 of 7

Toronto Mercury Users Group April 12, 2002

Step 10:
We need to execute the same script concurrently:

• against different environments,

• using different browsers,

• using different user roles/login IDs.

Storing setup parameters in a file on a local workstation.
C:\TestData\UTEnvironment.xls file:

URL Browser UserID Password

http://prodaceman1.configurator.com/ut IE a327842 123

Fragment of a script retrieving these parameters:
vLocalTestEnvironmentXls = "C:\\TestData\\UTTestEnvironment.xls";

Retrieve environment variables from a local EXCEL file:
ddt_open(vLocalTestEnvironmentXls);
vURL = ddt_val (vLocalTestEnvironmentXls, "URL");
vBrowser = ddt_val (vLocalTestEnvironmentXls, "Browser");
vUserID = ddt_val (vLocalTestEnvironmentXls, "UserID");
vPassword = ddt_val (vLocalTestEnvironmentXls, "Password");
ddt_close(vLocalTestEnvironmentXls);

To make a decision

• To rely or not to rely on wrun.ini file?
wrun.ini files should be synchronized on all machines.

• To use or not to use CSO library?
Not a lot of functions. Conflict between CSO functions and in house developed functions.

• Exception handling?
Conflicts of generic and project specific exceptions.

Absolute portability
How to develop scripts that could be copied between file system and TestDirector?

rc = getvar ("td_connection");
report_msg ("td_connection = " & rc);

if (rc == "on") {
 #Loading GUI map and libraries from TestDirector database:
 rc = GUI_load("TD_UT_GUI.gui");
 load("[TD]\\Subject\\ZTest\\Lib_UT_Functions",0,0);
 }
else {
 #Loading GUI map and libraries from a file system:
 rc = GUI_load("UT_01.gui");
 load("Lib_UT_Functions",0,0);
 }

Yury Makedonov ivm@ivm-s.com p. 7 of 7

Toronto Mercury Users Group April 12, 2002

Recommendations for project of any complexity
I recommend the following measures regardless of a complexity of your test automation projects.
In a long run they will save a lot of time for you.

Implement the complete hierarchy of folders for WinRunner scripts from day one:

• Folder for general libraries,

• Folder for All Application Scripts

• Subfolders for different Applications

• Subfolders for different Versions of the application

• All scripts for a specific version of an application are stored on the same level of hierarchy.
Subfolders to group scripts are not allowed (one more level of folders hierarchy).

Relative path to all objects, “testname” variable:

No specification of a full path starting with a drive letter.
Use relative path to all objects (scripts, GUI maps, data files) and “testname” variable.

Implement a standard script header containing description of a script + all initialization steps:

• GUI Load,

• Libraries load,

• Reading data file, etc.

Load general libraries using Startup Test:

Startup Test can also be used to:
• Load GUI maps common for all projects,
• Read common data files, etc.

Implement “Script Ownership” concept:

Master copy of any script belongs to a specific person.

Make it a standard.

