
Managing “Testing Cycles” efficiently p. 1 of 26

 © Yury Makedonov 2006

1

© Copyright 2006 – Yury Makedonov

(416) 481-8685
yury@ivm-s.com
http://www.softwaretestconsulting.com

Yury Yury Makedonov

Managing “Testing Cycles” efficiently

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 2

Sometimes the testing of a product consists of several
so called “Testing Cycles”.
To manage the Testing Cycles we have to better
understand their nature.
In this presentation we discuss the different reasons
for why these Testing Cycles can happen and how to
handle them.

Introduction

Managing “Testing Cycles” efficiently p. 2 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 3

Agenda

The following types of “Testing Cycles” will be discussed:
Real Testing Cycles
Defect Fixing Cycles

Code Fixing Cycles
Design Fixing Cycles
Requirements Fixing Cycles

Death March Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 4

Sometimes we group all test cases according to their
timing or hierarchy, e.g.:
Cycle 1: Transactional test cases (invoices,

purchase orders, etc.)
Cycle 2: Weekly cheque run
Cycle 3: Month-end reports and batches
This approach is typically used in complex System
Integration Testing projects.
We plan and manage these testing cycles using
standard project management techniques.

Real Testing Cycles

Managing “Testing Cycles” efficiently p. 3 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 5

The “Testing Cycle” term is not used in:
Extreme Programming,
Scrum,
Lean Software Development
etc.

In case of an Agile process:
Testing is happening concurrently with development
A team starts another iteration regardless of how
many defects are discovered.

Testing Cycles in an Agile environment

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 6

New iteration might be devoted to new features or to
defect fixing, but the term “Testing Cycle” is not used.
The development backlog consists of:

New features to implement
Defects to fix

Defects are treated the same way as new features.
These processes have no need for special
“Testing Cycles”.

It looks like these guys have everything under control.

Testing Cycles in Agile environment

Managing “Testing Cycles” efficiently p. 4 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 7

Typically we hear about “Testing Cycles” in projects
which use Waterfall SDLC or its derivatives.

Testers discover and report defects
Developers fix these defects and send a new
release for testing

Apparently these are “Defect Fixing Cycles”!
So, typically the “Testing Cycles” term is used in a
Waterfall development process to describe different
“Defect Fixing Cycles”.

Testing Cycles in Waterfall SDLC

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 8

Requirements

Design

Coding

Requirements Fixing
Cycles

Testing

Design Fixing Cycles

Code Fixing Cycles

Different Defect Fixing Cycles

Managing “Testing Cycles” efficiently p. 5 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 9

Why do these “Testing Cycles” happen in Waterfall but
not Agile processes?
Why do managers use such imprecise and misleading
terms?
Typically managers are not stupid.
They are apparently trying to reach certain goals.
What are these goals?

Defect Fixing Cycles vs. Testing Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 10

Requirements

Design

Coding

Testing

Waterfall SDLC:

According to this model :
The development of
requirements is finished before
the start of a design phase.
Design is finished before the
start of a coding phase.
Coding is finished before the
start of testing.

Managing “Testing Cycles” efficiently p. 6 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 11

Requirements

Design

Coding

Testing

Waterfall SDLC:

These tasks are used for:
Budgeting,
Planning,
Status reporting
from the very bottom of the
organization to the very top.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 12

Requirements

Design

Coding

Testing

Waterfall SDLC:
“In theory, there is no difference
between theory and practice.
In practice, there is...” :

In real life this theoretical model
sometimes doesn’t work.
Managers just pretend that their
projects follows this model.
They use this Waterfall
terminology to maintain the
illusion that they are in complete
control of a project.

Managing “Testing Cycles” efficiently p. 7 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 13

Requirements

Design

Coding

Requirements Fixing
Cycles

Testing

Design Fixing Cycles

Code Fixing Cycles

Different Defect Fixing Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 14

“Testing Cycles” are just terminological “mind tricks”.

Why are managers willing to lose efficiency through the
use of such imprecise and erroneous language?
Why are managers playing these games?
Are these games innocent or not?

We won’t discuss why such tricks are sometimes used
by manager–magicians in mature, hierarchical
organizations.
It’s outside the scope of this presentation.

Terminological “mind tricks”

Managing “Testing Cycles” efficiently p. 8 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 15

Do not fight for better and cleaner language
at any cost.
Remember that the managers already made their
choice.
Let’s instead discuss what testers should do
to better handle this situation.

Survival of terminological “mind tricks”

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 16

1 – Code Fixing Cycles

Code Fixing Cycles

Managing “Testing Cycles” efficiently p. 9 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 17

Coding

Testing

Testers are just doing their
job – they report defects
and verify whether they are
fixed or not.
Everything is simple unless
there is a request to plan
such Testing Cycles in
advance:

Number of these cycles
Duration of these cycles

Code Fixing Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 18

Testers can’t create such plans because
it was not them who created these defects.
This is just a game! Give some reasonable data:

Use numbers from previous releases to estimate
the duration and the number of these testing
cycles.
Use your best guesstimates for a new project.
Clearly describe your assumptions.

There is no value in spending a lot of time working
on such plan.
Pass the ball back to the developers - send your
estimate back to developers and the PM for review
and approval.

Planning Code Fixing Cycles

Managing “Testing Cycles” efficiently p. 10 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 19

2 – Design Fixing Cycles

Design Fixing Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 20

Design

Coding

Testing

They are rather similar to
code fixing cycles.
The risk is that a major
design defect may
require a significant
redesign and a lot of
coding to repair it.
You just can’t plan for
this in advance.

Design Fixing Cycles

Managing “Testing Cycles” efficiently p. 11 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 21

3 – Requirement Fixing Cycles

Requirement Fixing Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 22

Requirements

Design

Coding

Testing

These are typically
the most complex
cycles to handle.
We have to
understand the root
cause of these
requirement
changes.
New test cases are
required.

Requirement Fixing Cycles

Managing “Testing Cycles” efficiently p. 12 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 23

In a mass market company the requirements for a
specific release are typically pretty solid.
All new ideas are incorporated into the requirements
for the next release to avoid disruption, and to
decrease the time to market for the release under
development.
Requirements are typically much less stable in case of
custom software when a real customer is present.
The problem is the most severe when a customer
doesn’t have a mature software acquisition process
and doesn’t have recent software acquisition
experience.

Requirement changes

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 24

Root cause of Requirement Fixing cycles

Let’s take a look how requirements were developed:
The Business Analyst (BA) talked to users and
stakeholders.
Users and stakeholders explained what they
needed.
The Business Analyst got a perception that he
understood these users.

Managing “Testing Cycles” efficiently p. 13 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 25

Root cause of Requirement Fixing cycles
In reality the users and the Business Analyst were
speaking different languages:

they used different meanings of the same English
words,
considered different contexts,
made different assumptions.

As a result the Business Analyst significantly
misinterpreted the application users’ needs and
created a flawed requirements document.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 26

When a product was delivered
Customer: “This is not what we wanted!”

Managing “Testing Cycles” efficiently p. 14 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 27

A case study of Requirement Fixing cycles
It was a new application for the sales department
(~100 people) of a division of a big company.
The goal of this department was to configure and sell
telecommunication products.
The new application was to replace an existing
legacy Client/Server application.
The modern web application was to have a sexy web
interface and more functionality.
This department did not have an established software
acquisition/implementation process.
The vendor was a start-up company trying to
establish itself. 10-15 developers were working on
this project initially.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 28

A case study of Requirement Fixing cycles

This project followed the classic review and sign-off
approach:

Requirements were reviewed and signed off
Design of the system was reviewed and signed off
Specifications were reviewed and signed off
Development was finished and tested by the vendor

The first attempt to deliver the application to the
customer failed. The customer’s reaction was:

“This is not what we wanted!”

Managing “Testing Cycles” efficiently p. 15 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 29

Customer: “This is not what we wanted!”

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 30

Episode II - One more attempt

The requirements were modified using the same
review/sign off approach.
The vendor implemented these updated
requirements.

To make the acceptance process more organized
the customer brought in an external Test Manager
to supervise the user acceptance testing.

Managing “Testing Cycles” efficiently p. 16 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 31

Development of acceptance test cases
End users were brought to the project team to
develop acceptance test cases to verify the
requirements.
They started working together with “professional”
testers and were trained on how to develop test
cases.
Users were asked to use their own language when
writing these test cases. They ranked all existing
requirements and started developing test cases for
the most important requirements.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 32

Development of acceptance test cases

The first version of the test cases was
incomprehensible for professional testers and
developers.
The test cases were modified and the second
version could be understood by both testers and
developers.
Further on these acceptance test cases came to be
used instead of the original requirements.
These test cases still had many errors but
nevertheless were much better than original and
revised “requirements.”

Managing “Testing Cycles” efficiently p. 17 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 33

Start of testing

Users started testing as soon as acceptance test
cases for the major functions were developed.
The first round of testing was a complete disaster:

Most test cases failed.
It was impossible to even initiate the execution of
many test cases - they depended on the
successful executions of other test cases.

Many “Severity 1” and “Severity 2” defects were
recorded (high severity defects).

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 34

Change Control Board established

To better manage this project a “Change Control
Board” was established. It consisted of:

the project sponsor,
users of the application (acceptance testers) and
the developers’ managers.

The Board approved a list of defects (including
several missing functions) to be fixed.
Only defects of the highest severities (“Severity 1”
and “Severity 2”) were to be fixed.

Managing “Testing Cycles” efficiently p. 18 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 35

Defect fixing
The developers were not allowed to fix any defect or
implement any new feature without the approval of
this board.
The developers were allowed to work only on
defects of the highest priority and defects that
prevented the execution of major test cases.
The repair of not so severe defects was postponed
despite the developers’ promises that some of them
required “only 10 to 30 minutes to fix.”

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 36

Role of end users

The vendor had daily builds delivered for testing.
End users (acceptance testers) were available to
clarify specific details of test cases (requirements)
and defect reports for developers.
Those clarifications were important because initially
the developers had a lot of problems interpreting the
test cases and defect reports.
Development of new acceptance test cases
continued.

Managing “Testing Cycles” efficiently p. 19 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 37

Role of end users

Why were end users more efficient at developing
and executing test cases?
They have working knowledge of their business –
how to configure a product and create an order.
They were able to use their knowledge better when
creating and executing test cases than when talking
to a business analyst and trying to understand his
gibberish language.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 38

Change Control Board’s role
The Change Control Board discussed:

New test cases, which were essentially new
requirements,
Progress of testing,
Fixed defects,
New discovered defects,
Defects reported as fixed by developers that were
“failed” by acceptance testers.

Priority of remaining defects and additional “new”
defects were reviewed and revaluated every day.

Managing “Testing Cycles” efficiently p. 20 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 39

Requirement Fixing Cycles recommendations
What allowed for the efficient management of
“Testing Cycles“ on this project:

Active user involvement, instant feedback
Active involvement of the project sponsor, fast
decision making.
Co-location, effective communication
Iterative and incremental development in a
customer selected order.

The same approach can be recommended for any
project when significant changes in requirements
are expected.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 40

3 – “Death March” Cycles

“Death March” Cycles

Managing “Testing Cycles” efficiently p. 21 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 41

Requirements

Design

Coding

Testing

Developers and
managers do not believe
that they will meet a
deadline.
Developers just throw an
unfinished product over
the wall for testing,
pretending that
development was
completed.
Testers are pressured to
confirm that this release
is ready for production.

Death March Cycles

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 42

Death March Cycles
Most people do not enjoy this game.
This game might be dangerous.
You may develop adversarial relationships with
developers and turn some of your developer-friends
into enemies.
You may even lose your mental or physical health.

Managing “Testing Cycles” efficiently p. 22 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 43

How to spot a Death March project
Ambiguous chain of commands e.g.:

You were put in charge of User Acceptance
Testing but have no access to the project owner
or a customer PM.
You were brought in as a test expert to help a
customer with User Acceptance Testing but were
paid by the software vendor.

You are not getting answers for your questions;
escalated issues are not being resolved.
Testers are pressured to “certify” a release for
production.
Acceptance testing starts with an obviously
unfinished and unusually buggy product.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 44

Death March – testing
Try avoiding adversarial relationships with
developers – you are members of the same team
and depend on each other’s help.
Provide honest feedback to developers.
They are working on defect fixes – they need this
information.
Do not forget to properly document all defects.
Proper record keeping is your best friend under
these circumstances.

Managing “Testing Cycles” efficiently p. 23 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 45

Death March – status reporting
Tracking the delivered functionality:

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 46

Death March – providing options
Possible options when a deadline can’t be met:

Breaking a big release into several smaller
releases and delivering a bare minimum release
by a deadline.
Field trial – delivering a release only to a subset
of all customers.
Pilot – moving an application into the production
environment for further testing.

Managing “Testing Cycles” efficiently p. 24 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 47

Death March – summary
Quit? After all you only live once.
What to do:

Provide honest feedback to developers
They are working on defect fixes – they need this
information.
Provide honest feedback to management.
This information may help them make some
important desisions.
Provide management with additional options.

What not to do:
Do not provide an overly optimistic status report.

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 48

Conclusion

To successfully manage Testing Cycles you have to
understand their nature and use the corresponding
techniques.

Managing “Testing Cycles” efficiently p. 25 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 49

Questions?

Q & A

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 50

Contact Information

Yury Makedonov
Principal Consultant
IVM-S
(416) 481-8685
yury@ivm-s.com
http://www.softwaretestconsulting.com

Managing “Testing Cycles” efficiently p. 26 of 26

 © Yury Makedonov 2006

Managing “Testing Cycles” efficiently, © 2006 Yury Makedonov 51

Appendix – further reading

The Winston Royce paper,
"Managing the Development of Large Software
Systems“
The Edward Yourdon book, “Death March”
Google, Wikipedia, etc.

